skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bennington, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials. 
    more » « less
  2. Abstract Solid polymer electrolytes for lithium batteries promise improvements in safety and energy density if their conductivity can be increased. Nanostructured block‐copolymer electrolytes specifically have the potential to provide both good ionic conductivity and good mechanical properties. This study shows that the previously neglected nanoscale composition of the polymer electrolyte close to the electrode surface has an important effect on impedance measurements, despite its negligible extent compared to the bulk electrolyte. Using standard stainless steel blocking electrodes, the impedance of lithium salt‐doped poly(isoprene‐b‐styrene‐b‐ethylene oxide) (ISO) exhibits a marked decrease upon thermal processing of the electrolyte. In contrast, covering the electrode surface with a low molecular weight poly(ethylene oxide) (PEO) brush results in higher and more reproducible conductivity values, which are insensitive to the thermal history of the device. A qualitative model of this effect is based on the hypothesis that ISO surface reconstruction at the different electrode surfaces leads to a change in the electrostatic double layer, affecting electrochemical impedance spectroscopy measurements. As a main result, PEO‐brush modification of electrode surfaces is beneficial for the robust electrolyte performance of PEO‐containing block‐copolymers and may be crucial for their accurate characterization and use in Li‐ion batteries. 
    more » « less